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Three-Dimensional Finite-Element Method
with Edge Elements for Electromagnetic
Waveguide Discontinuities

Kiyoshi Ise, Kazuhiro Inoue, and Masanori Koshiba, Senior Member, IEEE

Abstract —When three-dimensional electromagnetic problems
are solved by the finite-element method based on a functional
with three components of electric or magnetic field, spurious
solutions appear if the traditional tetrahedral elements are
used. This paper shows that the finite-element method using
edge elements succeeds in suppressing spurious solutions and
moreover that this method succeeds in the analysis of three-
dimensional electromagnetic waveguide problems with metal
wedges.

1. INTRODUCTION

N general, the finite-clement analysis of three-dimen-
Isional clectromagnetic problems is based on a func-
tional with three components of electric or magnetic field.
However, when the eigenvalue problems are solved with
this functional, it is found that spurious solutions not
satisfying the condition V-H =0 appear if traditional
tetrahedral elements are used [1], [2].

Recently it has been reported that spurious solutions
appear in three-dimensional electromagnetic discontinu-
ity problems and that the penalty function method is
effective in suppressing these spurious solutions, but a
new kind of spurious solution, one dependent on the
penalty coefficient, is generated [3]. The penalty function
method is the one that makes the condition V- H =0 be
satisfied in a least-squares-manner [4]-[7].

In this paper a method using edge elements is intro-
duced to suppress spurious solutions. This method makes
the condition V- H =0 be satisfied in cach element. It is
confirmed that spurious solutions do not appear when the
finite-element method using edge clements is applied to
three-dimensional electromagnetic discontinuity prob-
lems.

It is noted that the finite-element method using three
components cannot adequately treat three-dimensional
electromagnetic waveguide problems with metal wedges.
because the transverse part of the magnetic or electric
field is infinite at a sharp metal edge [8], [9] and the
piecewise polynomials traditionally associated with finite
elements cannot accurately represent an infinite field.
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Webb succeeds in predicting dispersion in two-dimen-
sional waveguide problems with sharp metal edges by the
finite-element method using singular trial functions which
model the singular behavior of the field close to sharp
edges [9]. However, it may be difficult to develop this
method and apply it to the three-dimensional problems.

This paper shows that it is difficult to prescribe bound-
ary conditions on the fine points of metal wedges when
the finite-element method using traditional tetrahedral
elements is applied to three-dimensional electromagnetic
waveguide problems with metal wedges. On the other
hand, variables for edge elements are not at vertices but
at edges, so that it is unnecessary to prescribe boundary
conditions at the fine points of metal wedges. We show
that edge elements, therefore, may be available for the
analysis of arbitrarily shaped waveguides.

II. VarjaTioNAL FORMULATION

The waveguide junction as .shown in Fig. 1 is consid-
ered. The junction may be connected with rectangular
waveguides or may be loaded with arbitrarily shaped
dielectric. Here the boundary plane I connects the dis-
continuity region {1 to the rectangular waveguide i (i =
1,2), and the region Q surrounded by I',, T,, and T,
encloses the waveguide discontinuities completely. T, is
assumed to be a perfectly conducting wall.

From Maxwell’s equation, the following vectorial wave

equation is derived with respect to the magnetic field H:

' VX(e 'VXH)—kiH=0 (1)
where

ks =w’eqpq- (2)

The problem defined by (1) may be formulated variation-

ally [10], [11] and the functional F(H) is expressed as
follows:

F(H) =ffo(V><H)*-(e”1V><H)dQ

- kgf[fQH*-HdQ

+ffrH*~n><(e'1V><H)dI‘ (3)
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Fig. 1. Waveguide discontinuities.
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Fig. 2. Edge element.

where (/[ d( is the volume integral in the region (,
[/rdl' is the surface integral over the boundary I’
(=T;+T, +1I}), n is the outward unit normal vector on
the boundary I', and # indicates complex conjugate.

III. FiNiTE-ELEMENT FORMULATION

The region () is divided into rectangular paral-
lelepipeds as shown in Fig. 2. The magnetic field H,
(r=x,y,2z) in each element is approximated by edge
elements [12]-[16]. In the edge element, each edge of a
rectangular parallelepiped has a variable which consists of
only one component of the magnetic field in the direction
of the edge. H, is expanded in terms of the values of H,
at four nodes in the element as follows:;

Hr={Nr}T{Hr}e’ (4)
where {H,}, is the nodal magnetic field vector in each
element, 7 indicates a transpose, and the shape function

r=x,y,z
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vector {N'} is expressed as

-
0| M
V=
Ny
[1/4[1=(y = y) /L] [1= (2 - 2.) /1,]
41+ (y=y) /L [1-(z—2.) /1]
B 1/4[1+(y = y.) /L] [1+ (2= 2.) /1] ®
|41 (y =y /L] [1+ (2= 2.) /1]
o
N}
AN} = N3y‘
_N4y
[1/4[1—(z=z.) /L] [1-(x = x,) /1,]
1/4[1+(z~zc)/lz][1—(x—xc)/lx]
|yl -z ]+ (- e ] | ©
| 1/4[1= (2~ 2) /L] [1+(x = %) /1,]
e
G|
V= e
N
[1/4[1=(x =) /L] [1- (¥~ y) /1,]
| VAR (=) /L[ (v =y /8] | 7
141+ (x = x.) /L] [1+(y =) /L] |
| L/4[1=(x = x) /L] [1+(y = y.) /1]

Here the coordinate (x_, y,, z,) is the center of gravity of
the rectangular parallelepiped shown in Fig. 2.

When' the finite-element method is applied to (3), the
following matrix equation is obtained:

[S{H} - ki[T){H)}
+ Z’f/;’jweo[N](nle)lrldF

+ foeljweo[N](rbXE)Idel“:{O} (8)

[s1=X [ [ [[Ble7'[B]" a0 (9

(T1=X [ [ [INIINT a0 (10)

Here n; and n, are the outward unit normal vectors on
the boundaries I'; and I',, respectively, L, is the summa-
tion over all the elements, ¥, is the summation only over
the elements related to the boundaries I, and [,, [/f,dQ
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is the volume integral in each edge element, [/, dT is the
surface integral on each element in the boundaries I'; and
T,, and E is the electric field vector. The matrices [ B]
and [ N1 and the vector {H} are given by

(0} oAN") 0z —o(N")/ay
[Bl=|-a(N"}s0z  {0) AN} fox
oNY /oy —o(NYsax (0)
(11)
N0 {0
INI=| (0 (N} (0) (12)
0 {0y ()
(i)
(H)=| {H,} (13)
(H.)

where {H,} (r =x,y,z) is the vector composed of the
value of H, at all nodes in the entire region €} and {0} is a
null vector,

Let {H}, and {H}, be the nodal magnetic field vectors
related to the nodes on the boundaries I'; and I',, respec-
tively. Also, let {H}, be the nodal magnetic field vector
obtained by removing {H}, and {H}, from {H}. Then, (8)
is rewritten as

: .
[Rly [Rlw [Rla||{H):
(Rl [Rlo [Rl || {H}
[R]Zl [R]ZO [R]ZZ {H}Z

- Zf/;’jweo[N](nle)h\dl“_
= {0}
_ Z/j;jweo[N](nsz)lrzdf

(14)

where [R],," "
ing matrix [ R]:

,[R],, are the submatrices of the follow-

[R]=[S]-K3[T]. (15)

Eliminating { H}, from (14), we obtain the following equa-
tion:
{H}

[P]ll [P]12

[Plu [Pla || {H}:

_fowaO[N](n1XE)IF1dF
_ e’ ¢ (16)
_ 2ffejweo[N](n2><E)|rzdr
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where
[Py =[Rlu=[RL[RIn' TRl (172)
[Pl=[R}—[RLo[Rlw'[Rl::  (17b)
[Pl =[R]z—[RY[ Rloo [R]o: (17¢)
[Pl =[Rl~[Rlx[Rloo [Rlez:  (17d)

When the division of the region () is not sufficient owing
to restrictions imposed by computer memory, the sub-
structure method is introduced in the finite-clement
method [3], [17]. This method is as follows. First, the
analysis region () is divided into subregions, and the
finite-element method is applied to each subregion. Elim-
ination of internal variables is then iterated for these
subregions, and finally the dimension of the matrix equa-
tion to be solved can be reduced to the number of the
nodes on the input and output boundaries, with this
dimension being the same as that of (16).

IV. ANaLyTICAL FORMULATION

Assuming that the dominant TE,, mode is incident
from the left of I'; as shown in Fig. 1, we may relate the
transverse electric field E,; to the transverse magnetic
field H,, on the boundary T; (i =1,2) as follows [3]:

E, (£,m,0) =8,2a,0e"P%e,,(£,7)

Yy [ [ Homn )

m n jBtmn ¢

JouoH,(€',m")dé' dn'e,,, (£,m)

jBtmn

- LT [ [ )

.jwl"LOHti(f" nl) dg'dn,eZmn(§7n) (18)

where a;,, is the amplitude of the incident mode, and the
propagation constant 3,  is given by

imn

(19)

The mode functions e, and k.. (I=1,2) are given by
[3]. Equation (18) can be discretized as follows:

{Eg}l {0} B [fo], [Z§n]1 f“’F‘o{Hg}i
H}l.

{E"}t =[6i1{g}’ [Znﬁlz [Znn]l jle’O{

Bimn =\/k% —(mv/al)z——(mr/bi)z .

(20)
where [Z,,];," -,[Z,m]l are the matrices obtained by dis-
cretization of (18), and {g}, is given by [3].

Letting [Aly,[A);,---,[A4],, be the submatrices of
[Pl - -»[Pl,, of (16) and combining (16) with (20), the
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final matrix equation is obtained as follows:

[A—]n [/T]IZ (4] [A]ws Jw#o{Hs}l
[‘Z]Zl [Z]zz [A]s [A] Jw,uo{ n}l
[A]31 [A]32 [Z]ss [Z]34 fw.U«o{ }2
[A]41 [A]42 [2]43 [14_]44 fwMo{ }2
[Bli{g}
{0}
o | @Y
{0}
where
[A];=[A]n+] ][an] (22a)
[A),=[A)+[B]{ [Z,.] (22b)
[Aly=[A]x~ [Z§§]1 (22¢)
[ 4] =[ 4]~ [B]i[Z,], (22d)
[A]3=[Al:s+[B):[Z,], (22¢)
[A)y=[A4)+[B];[Z,,], (22f)
[5]43=[A]43_[B]2[Z§§]2 (22g)
[5]44=[A]44_[B]§[Z§n]2 (22h)
(1= L [ [ (vl (232)
[8) =2 [ [N ] ar. (230)

Here the ¢ and 7 directions on T, (i =1,2) correspond to
¢ and m shown in Fig. 1, respectively. The values of
H,(¢,7m) on T, computed from (21) allow determination of
the reflection coefficient S;; and transmission coefficient
S, of the TE,;, mode as follows:

[ hT0(€sm) jopoH,(€,m) dl —

_ 1B110¢
JB1ig@q10€”" 10!

; —1B110¢
JB1ig@yp€ P10

1=
(24)
Ba1o /[I"thIO(ga n) JouoH,(§,m)dT

S, = .
21 - iB210é2
Biwo JB210@1 1€’

(25)

V. NumericaL RESULTS

First, a waveguide loaded with diclectric is considered.
When the discontinuity problem shown in Fig. 3 is solved
by the finite-element method using the functional (3) it is
found that spurious solutions appear if the traditional
tetrahedral elements are used [3].

Figs. 4 and 5 show the element division with edge
elements and the reflection characteristics, respectively. It
is found from Fig. 5 that a spurious solution does not
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Fig. 3. Dielectric-loaded waveguide. Relative permittivity of dielectric
is 6, and the distance d between dielectric edge and T, (i =1,2) is 0.85.
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Fig. 4. Element division using edge elements (d = 0.8b). (a) Element
division #1. (b) Element division #2.

appear. The finite-element method using edge elements is
more effective for suppression of spurious solutions than
the method using the penalty function method, because a
new spurious solution dependent on the penalty coeffi-
cient is generated when the penalty function method is
introduced in the finite-element method [3].
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Fig. 5. Reflection characteristics of a dielectric-loaded waveguide.
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Fig. 7. Concentric step discontinuity. (a) Structure (a;=15.8 mm,
by =79 mm, a, = 22.9 mm, b, = 10.2 mm). (b) Scattering characteristics
(185;| being the magnitude of the transmission coefficient of the TE;;,

mode).
Reflection coefficients obtained by the element division
- #1 in Fig. 4(a) disagree with the results of Katzier [18]
and of Christ and Hartnagel [19] at higher frequencies.
This is because the element division of the region () is
not sufficient to obtain good numerical convergence. So
the substructure method [3] should be introduced to di-
vide the analysis region into many more elements. The
résults obtained by the element division #2 in Fig. 4(b)
for which the substructure method is used agree well with
other results [18], [19].

Then, arbitrarily shaped waveguides are considered.
When the waveguides with metal wedges shown in- Figs.
6(a), 7(a), and &(a) are analyzed by the finite-element
method, it is difficult to prescribe boundary conditions-on
wedges if the traditional tetrahedral elements are used,
because the transverse part of the magnetic or electric

field is infinite at fine points of metal wedges [8], [9].
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(b) Transmission characteristics.

Variables for edge elements are not at vertices but at
edges, 50 it is unnecessary to prescribe boundary condi-
tions at fine points of metal wedges. Edge elements
therefore may be available for the analysis of arbitrarily
shaped waveguides.

Fig. 6(b) shows the transmission characteristics of the
waveguide shown in Fig. 6(a). The results of edge ele-
ments are shown by the solid line. The results of the
penalty function method using tetrahedral elements
wherein the field is left free at fine points of a metal
wedge and the normal magnetic field there is set to zero
are represented by, respectively, dots and squares, with
the penalty coefficient s [1]-[3] being 1. The results of the
edge elements agree well with those of the two-dimen-
sional finite-element method [20] and boundary-element
method [21].

In [22], Picon says that the finite-element method with
tetrahedral elements based on three components of the
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electric field succeeds in solving problems with metal
wedges if the condition V- E =0 is imposed on the func-
tional. We also confirm that when the penalty function
method is introduced in the finite-element method with
tetrahedral elements, a stable field distribution is ob-
tained. But it is clearly seen from Fig. 6(b) that even if the
penalty function method is used, correct solutions are not
always obtained in the frequency range under considera-
tion.

Fig. 7(b) shows the reflection and transmission charac-
teristics of the concentric step discontinuity shown in Fig.
7(a). The solid and broken lines show the reflection and
transmission coefficients obtained by using edge ele-
ments, respectively. The dots and squares represent, re-
spectively, the reflection and transmission coefficients ob-
tained by the penalty function method using tetrahedral
elements in which the field is left free at fine points of
metal wedges and the penalty coefficient s is 1. The
results of edge elements agree well with the experimental
results, shown by X signs [23]. When the penalty function
method with tetrahedral elements is used, incorrect solu-
tions are obtained at certain frequencies in this problem
as well. l

Fig. 8(b) shows the transmission characteristics of the
E-plane ridge waveguide discontinuity shown in Fig. 8(a).
The results of the edge element, shown by the solid line,
agree well with the experimental results, shown by X
signs [24].

From the findings described above we expect that the
finite-element method using edge elements may be suit-
able for the analysis of arbitrarily shaped waveguides.

V1. CoNCLUSIONS

When the finite-element method using edge elements is
applied to three-dimensional electromagnetic discontinu-
ity problems, spurious solutions do not appear. Moreover,
this method has been successfully applied to three-dimen-
sional problems with metal wedges.
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