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Three-Dimensional Finite-Element Method
with Edge Elements for Electromagnetic

Waveguide Discontinuities
Kiyoshi Ise, Kazuhiro Inoue, and Masanori Koshiba, Senior Member, IEEE

Ab$tract —When three-dimensional electromagnetic problems

are solved by the finite-element method based on a functional
with three components of electric or magnetic field, spurious

solutions appear if the traditional tetrahedral elements are

used. This paper shows that the finite-element method using
edge elements succeeds in suppressing spurious solutions and

moreover that this method succeeds in the analysis of three-

dimensional electromagnetic waveguide problems with metal

wedges.

I. INTRODUCTION

I N general, the finite-element analysis of three-dimen-

sional electromagnetic problems is based on a func-

tional with three components of electric or magnetic field.

However, when the eigenvalue problems are solved with

this functional, it is found that spurious solutions not

satisfying the condition V. H = O appear if traditional

tetrahedral elements are used [1], [2].

Recently it has been reported that spurious solutions

appear in three-dimensional electromagnetic discontinu-

ity problems and that the penalty function method is

effective in suppressing these spurious solutions, but a

new kind of spurious solution, one dependent on the

penalty coefficient, is generated [3]. The penalty function

method is the one that makes the condition V“ H = O be

satisfied in a least-squares-manner [4]–[7].

In this paper a method using edge elements is intro-

duced to suppress spurious solutions. This method makes

the condition V’ H = O be satisfied in each element. It is

confirmed that spurious solutions do not appear when the

finite-element method using edge elements is applied to

three-dimensional electromagnetic discontinuity prob-

lems.

It is noted that the finite-element method using three

components cannot adequately treat three-dimensional

electromagnetic waveguide problems with metal wedges.

because the transverse part of the magnetic or electric

fielcl is infinite at a sharp metal edge [8], [9] and the

piecewise polynomials traditionally associated with finite

elements cannot accurately represent an infinite field.
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Webb succeeds in predicting dispersion in two-dimen-

sional waveguide problems with sharp metal edges by the

finite-element method using singular trial functions which

model the singular behavior of the field close to sharp

edges [9]. However, it may be difficult to develop this
,’

method and apply it to the three-dimensional problems.

This paper shows that it is difficult to prescribe bourid-

ary conditions on the fine points of metal wedges when

tlie finite-element method using traditional tetrahedral

elements is applied to three-dimensional electromagnetic

waveguide problems with metal wedges. On the other

hand, variables for edge elements are not at vertices but

at edges, so that it is unnecessary to prescribe boundary

conditions at the fine points of metal wedges. We show

that edge elements, therefore, may be available for tlhe
analysis of arbitrarily shaped waveguides.

11. VARIATIONAL FORMULATION

The waveguide junction as shown in Fig. 1 is consid-

ered. The junction may be connected with rectangular

waveguides or may be loaded with arbitrarily shaped

dielectric. Here the boundary plane 171connects the dis-

continuity region Q to the rectangular waveguide i (i =

1,2),and the region 0 surrounded by rl, rz, and 170

encloses the waveguide discontinuities completely. rO is

assumed to be a perfectly conducting wall.

From Maxwell’$ equation, the following vectorial wave

equation is derived with respect to the magnetic field H:

VX(E-lVXH)–k~H=O (1)

where

k; = (02eOpo. (2)

The problem defined by (1) may be fo~mulated variation-

ally [10], [11] and the functional F(H) is expressed as

follows:

F(H) =/// (V XH)*@l VXH)d Q
n

– k:
M

H*. HdK!
n

+
J/

II*”nx(E-lvx H)dr (3)
r
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Fig. 1. Waveguide discontinuities.
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Fig. 2. Edge element.

where /J~o cZC2 is the volume integral in the region (2,

//#r is the surface integral over the boundary r

( = rl + rz + ro), n is the outward unit normal vector on

the boundary 17, and * indicates complex conjugate.

III. FINITE-ELEMENT FORMULATION

The region O k divided into rectangular paral-

lelepipeds as shown in Fig. 2. The magnetic field H,

(r= x, y, z) in each element is approximated by edge
elements [12]–[16]. In the edge element, each edge of a

rectangular parallelepipeds has a variable which consists of

only one component of the magnetic field in the direction

of the edge. H, is expanded in terms of the values of H,

at four nodes in the element as follows:

H,= {N’} ~{ H,}e, r=x, y,z (4)

where {H,}e is the nodal magnetic field vector in each

element, T indicates a transpose, and the shape function

-1
l/4[1–(Y – Ywy][wz - _Zc)/zz]

l/4[l+(Y– YJ/ly][l -(z – zc)/’~z]
.

l/’4[l+(Y -Ye)/’ly][l+(z- 2.)/1,]

1

(5)

l\4[l-(Y -Ye)/ly][l+(z- zc)/~z]

HN:

11N:

[

l/’4[l-(z -zc)/lz] [l-(x -xc)/’lx]

l/4[l+(z -zc)/lz] [l-(x -xJ/lx]

= l/’4[l+ (z-zc)/lz] [l+(x-xc)/z.l

i

(6)

1/4[1–(2 –zc)\lz][l+(x –.ic)/zx]

[1N;

{Nz} = ‘
N;

11N;

‘!
l/4[1-(x -xc)/lx] [l-( Y- Yc)\ly]

l/4[l+(x -xJ/l.J [l-( Y- Yc)/zy]

1

l/4[1+(.X - xc)/lJ[l+(Y - Y.)/ly] “
(7)

1/4[1- (.X -xc)\ l.][l+(Y - YMY]

Here the coordinate (.xC, yC, ZC) is the center of gravity of
the rectangular parallelepipeds shown in Fig. 2.

When the finite-element method is applied to (3), the

following matrix equation is obtained:

[s]{ H}-k;[T]{H}

+ ~]~~@eOIN](nlxE)lr,dr
e’

+ ~//~oEo[N](~2 x~)lr,~r={o)
e’ e’

[s]= ~/JJ[B]E-qB]’dQ

e e

[T]=~///[N][N]T~Q.
e e

(8)

(9)

(lo)

Here n ~ and n ~ are the outward unit normal vectors on

the boundaries rl and rz, respectively, 1, is the summa-

tion over all the elements, Z~, is the summation only over

the elements related to the boundaries rl and rz, J](. dfl
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is the volume integral in each edge element, J(. d 17 is the

surface integral on each element in the boundaries 171and

rz, and E is the electric field vector. The matrices [B]

and [N] and the vector {H} are given by

[

{o} f3{fv’}/(?z –d{fv’)\dy

[B]= -d{ N’}/dz {o} C?{fvy}/dx
d{ N=}/dy –d{N=}/ax {o} 1

(11)

[

{N’} {o} {o}

[N]= {o} {N’} {o} 1 (12)

{o} {o} {N’}

[1

{HX}

{H} = {%} (13)

{Hz}

where {H,} (r = x, y, z ) is the vector composed of the

value of H, at all nodes in the entire region 0 and {O} is a

null vector.

Let {H}l and {H}z be the nodal magnetic field vectors

related to the nodes on the boundaries rl and rz, respec-

tively. Also, let {H}O be the nodal magnetic field vector

obtained by removing {H}l and ‘{H}z from {H}. Then, (8)

is rewritten as

[

[R]ll [l?],. [1?],,

[R]o, [R]oo [R]o,

R]21 [R]*O [R]22II
{H}l

{H},

{H},

1

——

1
{o}

I
(14)

‘~~~j@~o[N](n~XE)lr,dr
e’

where [Rlll, ” o“, [R]zz are the submatrices of the follow-

ing matrix [R]:

[R]=[s]-k~[T]. (15)

Eliminating {H}O from (14), we obtain the following equa-

tion:

[1[P]l, [P]l,

[lJ]21 [P],,

12’91

where

[P]l, =[R],, -[ R],OIR];’[R]O, (17a)

[P],2=[R],2-[R] 10[R];’[R]02 (17b)

[P]21=[R]2,-[ R]20[R]O;1[R]0, (17C)

[P]22=[R]22-[R]20[R];1[R]02. (17($

When the division of the region Q is not sufficient owing

to restrictions imposed by computer memory, the sub-

structure method ‘is introduced in the finite-element

method [3], [17]. This method is as follows. First, the

analysis region Q is divided into subregions, and the

finite-element method is applied to each subregion. Elimi-

nation of internal variables is then iterated for these

subregions, and finally the dimension of the matrix equa-

tion to be solved can be reduced to the number of the

nodes on the input and output boundaries, with this

dimension being the same as that of (16).

IV. ANALYTICAL FORMULATION

Assuming that the dominant TEIO mode is incident

from the left of 171 as shown in Fig. 1, we may relate the

transverse electric field E,i to the transverse magnetic

field H,, on the boundary r, (i= 1, 2) as follows [3]:

.

where silo is the amplitude of the incident mode, and the

propagation constant ~i~. is given by

The mode functions el~. and hl~. (1= 1,2) are given by

[3]. Equation (18) can be discretized as follows:

[1{-%},=
{E~},

(20)

where [Z<&] i,” “ “, [ZT7]l are the matrices obtained by c~is-

cretization of (18), and {g}, is given by [3].
Letting [A] II, [A]12, ” “ “, [A]A4 be the submatrices of

[P]ll, ” “ “, [P],; of (16) and combining (16) with (20), the
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final matrix equation is obtained as follows:

[ II

[2]1, [2],2 [A],, [A],, j@yo{He}l -

[2]21 [Z]22 [A],, [A]2, jow,{llq}l

[A]31 [A]32 [2],, [2]34 @wo{Hc}2

where

——

[B];{g}

{o}

I {o}

{o}

[zlll=[~lll+[Bl: [z.,]l

[~]1, =[A]12+[B]:[ZWv]1

[X]2, =[~121-[B1f[z~J,

[a22=[A122-[l@c.],

[2133 =[~133+[~l;[z.f]2

[Z]34=[A]34+[B] ;[ZJ2

[~],, =[A]43-[B]:[z$f]2

[~]4, =[A]44-[B]i[zfT]2

1(21)

(22a)

(22b)

(22C)

(22d)

(22e)

(22f)

(22g)

(22h)

[B]:= ~~/,k;{N’}{N’}%tdr (23a)
e’ e

[B]: = ~ J@{Nf}{N”}2-lr, m. (23b)
e’ e

Here the .& and q directions on r, (i= 1,2) correspond to

~ and q shown in Fig. 1, respectively. The values of

H,i(g, q) on r, computed from (21) allow determination of

the reflection coefficient Sll and transmission coefficient

S21 of the TEIO mode as follows:

s = l(r,h;lo(~,q) ..i~wo~,l(fjq) dr – j~lloalloe-’p’’”{’
11

– j@lloalloeJP’’~r’

(24)

V. NUMERICAL RESULTS

First, a waveguide loaded with dielectric is considered.

When the discontinuity problem shown in Fig. 3 is solved

by the finite-element method using the functional (3) it is

found that spurious solutions appear if the traditional

tetrahedral elements are used [3].

Figs. 4 and 5 show the element division with edge

elements and the reflection characteristics, respectively. It

is found from Fig. 5 that a srmrious solution does not

/ /

0.601b

0.399b

J-
U 2b

Y
-
0. 556b

0.888b “
X2

Fig. 3. Dielectric-loaded waveguide. Relative permittivity of dielectric
is 6, and the distance d between dielectric edge and ~ (i= 1, 2) is 0.8b.

x

(a)

x

(b)

Fig. 4. Element division using edge elements (d= 0.8b). (a) Element

division #1. (b) Element division #2.

appear. The finite-element method using edge elements is

more effective for suppression of spurious solutions than

the method using the penalty function method, because a

new spurious solution dependent on the penalty coeffi-

cient is generated when the penalty function method is

introduced in the finite-element method [3].
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Fig. 5. Reflection characteristics of a dielectric-loaded waveguide
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Fig. 6. Right-angle corner bend. (a) Structure. (b) Power transmission
coefficient.
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Fig. 7. Concentric step discontinuity. (a) Structure (al= 15.8 mm,
bl = 7.9 mm, az = 22.9 mm, bz = 10.2 mm). (b) Scattering characteristics

(&~being the magnitude of the transmission coefficient of the TIE30

Reflection coefficients obtained by the element division

#1 in Fig. 4(a) disagree with the results of Katzier [118]

and of Christ and Hartnagel [19] at higher frequencies.

This is because the element division of the region fl is

not sufficient to obtain good numerical convergence. So

the substructure method [3] should be introduced to di-

vide the analysis region into many more elements. The

results obtained by the element division #2 in Fig. 4(b)

for which the substructure method is used agree well with

other results [181, [19].

Then, arbitrarily shaped waveguides are considered.

When the waveguides with metal wedges shown in Figs.

6(a), 7(a), and 8(a) are analyzed by the finite-element

method, it is difficult to prescribe boundary conditions on

wedges if the traditional tetrahedral elements are used,

because the transverse part of the magnetic or electric
field is infinite at fine points of metal wedges [81, [9].
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Fig. 8. E-plane ridge waveguide discontinuity. (a) Structure (a= 19.05

mm, b = 9.524 mm, 1 = 5.08 mm, W= 1.016 mm, h = 7.619 mm),

(b) Transmission characteristics.

Variables for edge elements are not at vertices but at

edges, so it is unnecessav to prescribe boundary condi-

tions at fine points of metal wedges. Edge elements

therefore may be available for the analysis of arbitrarily

shaped waveguides,

Fig. 6(b) shows the transmission characteristics of the

waveguide shown in Fig. 6(a). The results of edge ele-

ments are shown by the solid line. The results of the

penalty function method using tetrahedral elements

wherein the field is left free at fine points of a metal

wedge and the normal magnetic field there is set to zero

are represented by, respectively, dots and squares, with
the penalty coefficient s [1]–[3] being 1. The results of the

edge elements agree well with those of the two-dimen-

sional finite-element method [20] and boundary-element

method [21].

In [22], Picon says that the finite-element method with

tetrahedral elements based on three components of the

electric field succeeds in solving problems with metal

wedges if the condition V“ E = O is imposed on the func-

tional. We also confirm that when the penalty function

method is introduced in the finite-element method with

tetrahedral elements, a stable field distribution is ob-

tained. But it is clearly seen from Fig. 6(b) that even if the

penalty function method is used, correct solutions are not

always obtained in the frequency range under considera-

tion.

Fig. 7(b) shows the reflection and transmission charac-

teristics of the concentric step discontinuity shown in Fig.

7(a). The solid and broken lines show the reflection and

transmission coefficients obtained by using edge ele-

ments, respectively. The dots and squares represent, re-

spectively, the reflection and transmission coefficients ob-

tained by the penalty function method using tetrahedral

elements in which the field is left free at fine points of

metal wedges and the penalty coefficient s is 1. The

results of edge elements agree well with the experimental

results, shown by X signs [23]. When the penalty function

method with tetrahedral elements is used, incorrect solu-

tions are obtained at certain frequencies in this problem

as well.

Fig. 8(b) shows the transmission characteristics of the

E-plane ridge waveguide discontinuity shown in Fig. 8(a).

The results of the edge element, shown by the solid line,

agree well with the experimental results, shown by x

signs [24].

From the findings described above we expect that the

finite-element method using edge elements may be suit-

able for the analysis of arbitrarily shaped waveguides.

VI. CONCLUSIONS

When the finite-element method using edge elements is

applied to three-dimensional electromagnetic discontinu-

ity problems, spurious solutions do not appear. Moreover,

this method has been successfully applied to three-dimen-

sional problems with metal wedges.
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